Copied to
clipboard

G = C32⋊F7order 378 = 2·33·7

The semidirect product of C32 and F7 acting via F7/C7=C6

metabelian, supersoluble, monomial

Aliases: C32⋊F7, C7⋊He31C2, C7⋊(C32⋊C6), (C3×C21)⋊3C6, C3⋊D212C3, C21.4(C3×S3), C3.4(C3⋊F7), (C3×C7⋊C3)⋊1S3, SmallGroup(378,22)

Series: Derived Chief Lower central Upper central

C1C3×C21 — C32⋊F7
C1C7C21C3×C21C7⋊He3 — C32⋊F7
C3×C21 — C32⋊F7
C1

Generators and relations for C32⋊F7
 G = < a,b,c,d | a3=b3=c7=d6=1, ab=ba, ac=ca, dad-1=a-1b-1, bc=cb, dbd-1=b-1, dcd-1=c5 >

63C2
3C3
21C3
42C3
21S3
63C6
63S3
7C32
14C32
9D7
3C7⋊C3
3C21
6C7⋊C3
7C3⋊S3
21C3×S3
7He3
3D21
9F7
9D21
2C3×C7⋊C3
7C32⋊C6
3C3⋊F7

Character table of C32⋊F7

 class 123A3B3C3D3E3F6A6B721A21B21C21D21E21F21G21H
 size 16326212142426363666666666
ρ11111111111111111111    trivial
ρ21-1111111-1-1111111111    linear of order 2
ρ31-111ζ3ζ32ζ3ζ32ζ65ζ6111111111    linear of order 6
ρ41-111ζ32ζ3ζ32ζ3ζ6ζ65111111111    linear of order 6
ρ51111ζ3ζ32ζ3ζ32ζ3ζ32111111111    linear of order 3
ρ61111ζ32ζ3ζ32ζ3ζ32ζ3111111111    linear of order 3
ρ7202-122-1-1002-122-1-1-1-1-1    orthogonal lifted from S3
ρ8202-1-1--3-1+-3ζ6ζ65002-122-1-1-1-1-1    complex lifted from C3×S3
ρ9202-1-1+-3-1--3ζ65ζ6002-122-1-1-1-1-1    complex lifted from C3×S3
ρ106066000000-1-1-1-1-1-1-1-1-1    orthogonal lifted from F7
ρ1160-3000000060-3-300000    orthogonal lifted from C32⋊C6
ρ12606-3000000-11-21/2-1-11-21/21+21/21+21/21-21/21+21/2    orthogonal lifted from C3⋊F7
ρ1360-30000000-1ζ32ζ75+2ζ32ζ7332ζ72+2ζ32ζ732+2ζ7573+2ζ727+11+21/21-21/2ζ3ζ76+2ζ3ζ73+2ζ3ζ723ζ73+2ζ767372+2ζ7+1ζ3ζ76+2ζ3ζ75+2ζ3ζ743ζ73+2ζ767574+2ζ7+1ζ3ζ75+2ζ3ζ733ζ72+2ζ3ζ73+2ζ7573+2ζ727+132ζ7632ζ7432ζ73+2ζ32ζ723276+2ζ74+2ζ7372+132ζ7532ζ7432ζ73+2ζ32ζ73275+2ζ74+2ζ737+1    orthogonal faithful
ρ1460-30000000-1ζ3ζ76+2ζ3ζ75+2ζ3ζ743ζ73+2ζ767574+2ζ7+11-21/21+21/232ζ7532ζ7432ζ73+2ζ32ζ73275+2ζ74+2ζ737+132ζ7632ζ7432ζ73+2ζ32ζ723276+2ζ74+2ζ7372+1ζ3ζ76+2ζ3ζ73+2ζ3ζ723ζ73+2ζ767372+2ζ7+1ζ3ζ75+2ζ3ζ733ζ72+2ζ3ζ73+2ζ7573+2ζ727+1ζ32ζ75+2ζ32ζ7332ζ72+2ζ32ζ732+2ζ7573+2ζ727+1    orthogonal faithful
ρ1560-30000000-1ζ3ζ75+2ζ3ζ733ζ72+2ζ3ζ73+2ζ7573+2ζ727+11-21/21+21/2ζ3ζ76+2ζ3ζ75+2ζ3ζ743ζ73+2ζ767574+2ζ7+1ζ3ζ76+2ζ3ζ73+2ζ3ζ723ζ73+2ζ767372+2ζ7+1ζ32ζ75+2ζ32ζ7332ζ72+2ζ32ζ732+2ζ7573+2ζ727+132ζ7532ζ7432ζ73+2ζ32ζ73275+2ζ74+2ζ737+132ζ7632ζ7432ζ73+2ζ32ζ723276+2ζ74+2ζ7372+1    orthogonal faithful
ρ1660-30000000-1ζ3ζ76+2ζ3ζ73+2ζ3ζ723ζ73+2ζ767372+2ζ7+11+21/21-21/232ζ7632ζ7432ζ73+2ζ32ζ723276+2ζ74+2ζ7372+132ζ7532ζ7432ζ73+2ζ32ζ73275+2ζ74+2ζ737+1ζ3ζ76+2ζ3ζ75+2ζ3ζ743ζ73+2ζ767574+2ζ7+1ζ32ζ75+2ζ32ζ7332ζ72+2ζ32ζ732+2ζ7573+2ζ727+1ζ3ζ75+2ζ3ζ733ζ72+2ζ3ζ73+2ζ7573+2ζ727+1    orthogonal faithful
ρ1760-30000000-132ζ7532ζ7432ζ73+2ζ32ζ73275+2ζ74+2ζ737+11-21/21+21/2ζ3ζ75+2ζ3ζ733ζ72+2ζ3ζ73+2ζ7573+2ζ727+1ζ32ζ75+2ζ32ζ7332ζ72+2ζ32ζ732+2ζ7573+2ζ727+132ζ7632ζ7432ζ73+2ζ32ζ723276+2ζ74+2ζ7372+1ζ3ζ76+2ζ3ζ75+2ζ3ζ743ζ73+2ζ767574+2ζ7+1ζ3ζ76+2ζ3ζ73+2ζ3ζ723ζ73+2ζ767372+2ζ7+1    orthogonal faithful
ρ18606-3000000-11+21/2-1-11+21/21-21/21-21/21+21/21-21/2    orthogonal lifted from C3⋊F7
ρ1960-30000000-132ζ7632ζ7432ζ73+2ζ32ζ723276+2ζ74+2ζ7372+11+21/21-21/2ζ32ζ75+2ζ32ζ7332ζ72+2ζ32ζ732+2ζ7573+2ζ727+1ζ3ζ75+2ζ3ζ733ζ72+2ζ3ζ73+2ζ7573+2ζ727+132ζ7532ζ7432ζ73+2ζ32ζ73275+2ζ74+2ζ737+1ζ3ζ76+2ζ3ζ73+2ζ3ζ723ζ73+2ζ767372+2ζ7+1ζ3ζ76+2ζ3ζ75+2ζ3ζ743ζ73+2ζ767574+2ζ7+1    orthogonal faithful

Smallest permutation representation of C32⋊F7
On 63 points
Generators in S63
(1 43 22)(2 44 23)(3 45 24)(4 46 25)(5 47 26)(6 48 27)(7 49 28)(8 50 29)(9 51 30)(10 52 31)(11 53 32)(12 54 33)(13 55 34)(14 56 35)(15 57 36)(16 58 37)(17 59 38)(18 60 39)(19 61 40)(20 62 41)(21 63 42)
(1 15 8)(2 16 9)(3 17 10)(4 18 11)(5 19 12)(6 20 13)(7 21 14)(22 36 29)(23 37 30)(24 38 31)(25 39 32)(26 40 33)(27 41 34)(28 42 35)(43 57 50)(44 58 51)(45 59 52)(46 60 53)(47 61 54)(48 62 55)(49 63 56)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)
(2 4 3 7 5 6)(8 15)(9 18 10 21 12 20)(11 17 14 19 13 16)(22 50 29 43 36 57)(23 53 31 49 40 62)(24 56 33 48 37 60)(25 52 35 47 41 58)(26 55 30 46 38 63)(27 51 32 45 42 61)(28 54 34 44 39 59)

G:=sub<Sym(63)| (1,43,22)(2,44,23)(3,45,24)(4,46,25)(5,47,26)(6,48,27)(7,49,28)(8,50,29)(9,51,30)(10,52,31)(11,53,32)(12,54,33)(13,55,34)(14,56,35)(15,57,36)(16,58,37)(17,59,38)(18,60,39)(19,61,40)(20,62,41)(21,63,42), (1,15,8)(2,16,9)(3,17,10)(4,18,11)(5,19,12)(6,20,13)(7,21,14)(22,36,29)(23,37,30)(24,38,31)(25,39,32)(26,40,33)(27,41,34)(28,42,35)(43,57,50)(44,58,51)(45,59,52)(46,60,53)(47,61,54)(48,62,55)(49,63,56), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63), (2,4,3,7,5,6)(8,15)(9,18,10,21,12,20)(11,17,14,19,13,16)(22,50,29,43,36,57)(23,53,31,49,40,62)(24,56,33,48,37,60)(25,52,35,47,41,58)(26,55,30,46,38,63)(27,51,32,45,42,61)(28,54,34,44,39,59)>;

G:=Group( (1,43,22)(2,44,23)(3,45,24)(4,46,25)(5,47,26)(6,48,27)(7,49,28)(8,50,29)(9,51,30)(10,52,31)(11,53,32)(12,54,33)(13,55,34)(14,56,35)(15,57,36)(16,58,37)(17,59,38)(18,60,39)(19,61,40)(20,62,41)(21,63,42), (1,15,8)(2,16,9)(3,17,10)(4,18,11)(5,19,12)(6,20,13)(7,21,14)(22,36,29)(23,37,30)(24,38,31)(25,39,32)(26,40,33)(27,41,34)(28,42,35)(43,57,50)(44,58,51)(45,59,52)(46,60,53)(47,61,54)(48,62,55)(49,63,56), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63), (2,4,3,7,5,6)(8,15)(9,18,10,21,12,20)(11,17,14,19,13,16)(22,50,29,43,36,57)(23,53,31,49,40,62)(24,56,33,48,37,60)(25,52,35,47,41,58)(26,55,30,46,38,63)(27,51,32,45,42,61)(28,54,34,44,39,59) );

G=PermutationGroup([[(1,43,22),(2,44,23),(3,45,24),(4,46,25),(5,47,26),(6,48,27),(7,49,28),(8,50,29),(9,51,30),(10,52,31),(11,53,32),(12,54,33),(13,55,34),(14,56,35),(15,57,36),(16,58,37),(17,59,38),(18,60,39),(19,61,40),(20,62,41),(21,63,42)], [(1,15,8),(2,16,9),(3,17,10),(4,18,11),(5,19,12),(6,20,13),(7,21,14),(22,36,29),(23,37,30),(24,38,31),(25,39,32),(26,40,33),(27,41,34),(28,42,35),(43,57,50),(44,58,51),(45,59,52),(46,60,53),(47,61,54),(48,62,55),(49,63,56)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63)], [(2,4,3,7,5,6),(8,15),(9,18,10,21,12,20),(11,17,14,19,13,16),(22,50,29,43,36,57),(23,53,31,49,40,62),(24,56,33,48,37,60),(25,52,35,47,41,58),(26,55,30,46,38,63),(27,51,32,45,42,61),(28,54,34,44,39,59)]])

Matrix representation of C32⋊F7 in GL6(𝔽43)

40331530294
393629112625
1814114291
42171310328
151432282518
25403914107
,
255050
025505
3838400038
500255
3803838400
0380383840
,
424242424242
100000
010000
001000
000100
000010
,
4200000
0000042
0004200
0420000
111111
0000420

G:=sub<GL(6,GF(43))| [40,39,18,42,15,25,33,36,14,17,14,40,15,29,11,13,32,39,30,11,4,10,28,14,29,26,29,3,25,10,4,25,1,28,18,7],[2,0,38,5,38,0,5,2,38,0,0,38,5,5,40,0,38,0,0,5,0,2,38,38,5,0,0,5,40,38,0,5,38,5,0,40],[42,1,0,0,0,0,42,0,1,0,0,0,42,0,0,1,0,0,42,0,0,0,1,0,42,0,0,0,0,1,42,0,0,0,0,0],[42,0,0,0,1,0,0,0,0,42,1,0,0,0,0,0,1,0,0,0,42,0,1,0,0,0,0,0,1,42,0,42,0,0,1,0] >;

C32⋊F7 in GAP, Magma, Sage, TeX

C_3^2\rtimes F_7
% in TeX

G:=Group("C3^2:F7");
// GroupNames label

G:=SmallGroup(378,22);
// by ID

G=gap.SmallGroup(378,22);
# by ID

G:=PCGroup([5,-2,-3,-3,-3,-7,182,187,723,8104,1359]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^7=d^6=1,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1*b^-1,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^5>;
// generators/relations

Export

Subgroup lattice of C32⋊F7 in TeX
Character table of C32⋊F7 in TeX

׿
×
𝔽