metabelian, supersoluble, monomial
Aliases: C32⋊F7, C7⋊He3⋊1C2, C7⋊(C32⋊C6), (C3×C21)⋊3C6, C3⋊D21⋊2C3, C21.4(C3×S3), C3.4(C3⋊F7), (C3×C7⋊C3)⋊1S3, SmallGroup(378,22)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C7 — C21 — C3×C21 — C7⋊He3 — C32⋊F7 |
C3×C21 — C32⋊F7 |
Generators and relations for C32⋊F7
G = < a,b,c,d | a3=b3=c7=d6=1, ab=ba, ac=ca, dad-1=a-1b-1, bc=cb, dbd-1=b-1, dcd-1=c5 >
Character table of C32⋊F7
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 3F | 6A | 6B | 7 | 21A | 21B | 21C | 21D | 21E | 21F | 21G | 21H | |
size | 1 | 63 | 2 | 6 | 21 | 21 | 42 | 42 | 63 | 63 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ65 | ζ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 6 |
ρ4 | 1 | -1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ6 | ζ65 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 6 |
ρ5 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ6 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ7 | 2 | 0 | 2 | -1 | 2 | 2 | -1 | -1 | 0 | 0 | 2 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ8 | 2 | 0 | 2 | -1 | -1-√-3 | -1+√-3 | ζ6 | ζ65 | 0 | 0 | 2 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | complex lifted from C3×S3 |
ρ9 | 2 | 0 | 2 | -1 | -1+√-3 | -1-√-3 | ζ65 | ζ6 | 0 | 0 | 2 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | complex lifted from C3×S3 |
ρ10 | 6 | 0 | 6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from F7 |
ρ11 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C32⋊C6 |
ρ12 | 6 | 0 | 6 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1-√21/2 | -1 | -1 | 1-√21/2 | 1+√21/2 | 1+√21/2 | 1-√21/2 | 1+√21/2 | orthogonal lifted from C3⋊F7 |
ρ13 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | ζ32ζ75+2ζ32ζ73+ζ32ζ72+2ζ32ζ7+ζ32+2ζ75+ζ73+2ζ72+ζ7+1 | 1+√21/2 | 1-√21/2 | ζ3ζ76+2ζ3ζ73+2ζ3ζ72+ζ3ζ7+ζ3+2ζ76+ζ73+ζ72+2ζ7+1 | ζ3ζ76+2ζ3ζ75+2ζ3ζ74+ζ3ζ7+ζ3+2ζ76+ζ75+ζ74+2ζ7+1 | ζ3ζ75+2ζ3ζ73+ζ3ζ72+2ζ3ζ7+ζ3+2ζ75+ζ73+2ζ72+ζ7+1 | 2ζ32ζ76+ζ32ζ74+ζ32ζ73+2ζ32ζ72+ζ32+ζ76+2ζ74+2ζ73+ζ72+1 | 2ζ32ζ75+ζ32ζ74+ζ32ζ73+2ζ32ζ7+ζ32+ζ75+2ζ74+2ζ73+ζ7+1 | orthogonal faithful |
ρ14 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | ζ3ζ76+2ζ3ζ75+2ζ3ζ74+ζ3ζ7+ζ3+2ζ76+ζ75+ζ74+2ζ7+1 | 1-√21/2 | 1+√21/2 | 2ζ32ζ75+ζ32ζ74+ζ32ζ73+2ζ32ζ7+ζ32+ζ75+2ζ74+2ζ73+ζ7+1 | 2ζ32ζ76+ζ32ζ74+ζ32ζ73+2ζ32ζ72+ζ32+ζ76+2ζ74+2ζ73+ζ72+1 | ζ3ζ76+2ζ3ζ73+2ζ3ζ72+ζ3ζ7+ζ3+2ζ76+ζ73+ζ72+2ζ7+1 | ζ3ζ75+2ζ3ζ73+ζ3ζ72+2ζ3ζ7+ζ3+2ζ75+ζ73+2ζ72+ζ7+1 | ζ32ζ75+2ζ32ζ73+ζ32ζ72+2ζ32ζ7+ζ32+2ζ75+ζ73+2ζ72+ζ7+1 | orthogonal faithful |
ρ15 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | ζ3ζ75+2ζ3ζ73+ζ3ζ72+2ζ3ζ7+ζ3+2ζ75+ζ73+2ζ72+ζ7+1 | 1-√21/2 | 1+√21/2 | ζ3ζ76+2ζ3ζ75+2ζ3ζ74+ζ3ζ7+ζ3+2ζ76+ζ75+ζ74+2ζ7+1 | ζ3ζ76+2ζ3ζ73+2ζ3ζ72+ζ3ζ7+ζ3+2ζ76+ζ73+ζ72+2ζ7+1 | ζ32ζ75+2ζ32ζ73+ζ32ζ72+2ζ32ζ7+ζ32+2ζ75+ζ73+2ζ72+ζ7+1 | 2ζ32ζ75+ζ32ζ74+ζ32ζ73+2ζ32ζ7+ζ32+ζ75+2ζ74+2ζ73+ζ7+1 | 2ζ32ζ76+ζ32ζ74+ζ32ζ73+2ζ32ζ72+ζ32+ζ76+2ζ74+2ζ73+ζ72+1 | orthogonal faithful |
ρ16 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | ζ3ζ76+2ζ3ζ73+2ζ3ζ72+ζ3ζ7+ζ3+2ζ76+ζ73+ζ72+2ζ7+1 | 1+√21/2 | 1-√21/2 | 2ζ32ζ76+ζ32ζ74+ζ32ζ73+2ζ32ζ72+ζ32+ζ76+2ζ74+2ζ73+ζ72+1 | 2ζ32ζ75+ζ32ζ74+ζ32ζ73+2ζ32ζ7+ζ32+ζ75+2ζ74+2ζ73+ζ7+1 | ζ3ζ76+2ζ3ζ75+2ζ3ζ74+ζ3ζ7+ζ3+2ζ76+ζ75+ζ74+2ζ7+1 | ζ32ζ75+2ζ32ζ73+ζ32ζ72+2ζ32ζ7+ζ32+2ζ75+ζ73+2ζ72+ζ7+1 | ζ3ζ75+2ζ3ζ73+ζ3ζ72+2ζ3ζ7+ζ3+2ζ75+ζ73+2ζ72+ζ7+1 | orthogonal faithful |
ρ17 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 2ζ32ζ75+ζ32ζ74+ζ32ζ73+2ζ32ζ7+ζ32+ζ75+2ζ74+2ζ73+ζ7+1 | 1-√21/2 | 1+√21/2 | ζ3ζ75+2ζ3ζ73+ζ3ζ72+2ζ3ζ7+ζ3+2ζ75+ζ73+2ζ72+ζ7+1 | ζ32ζ75+2ζ32ζ73+ζ32ζ72+2ζ32ζ7+ζ32+2ζ75+ζ73+2ζ72+ζ7+1 | 2ζ32ζ76+ζ32ζ74+ζ32ζ73+2ζ32ζ72+ζ32+ζ76+2ζ74+2ζ73+ζ72+1 | ζ3ζ76+2ζ3ζ75+2ζ3ζ74+ζ3ζ7+ζ3+2ζ76+ζ75+ζ74+2ζ7+1 | ζ3ζ76+2ζ3ζ73+2ζ3ζ72+ζ3ζ7+ζ3+2ζ76+ζ73+ζ72+2ζ7+1 | orthogonal faithful |
ρ18 | 6 | 0 | 6 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1+√21/2 | -1 | -1 | 1+√21/2 | 1-√21/2 | 1-√21/2 | 1+√21/2 | 1-√21/2 | orthogonal lifted from C3⋊F7 |
ρ19 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 2ζ32ζ76+ζ32ζ74+ζ32ζ73+2ζ32ζ72+ζ32+ζ76+2ζ74+2ζ73+ζ72+1 | 1+√21/2 | 1-√21/2 | ζ32ζ75+2ζ32ζ73+ζ32ζ72+2ζ32ζ7+ζ32+2ζ75+ζ73+2ζ72+ζ7+1 | ζ3ζ75+2ζ3ζ73+ζ3ζ72+2ζ3ζ7+ζ3+2ζ75+ζ73+2ζ72+ζ7+1 | 2ζ32ζ75+ζ32ζ74+ζ32ζ73+2ζ32ζ7+ζ32+ζ75+2ζ74+2ζ73+ζ7+1 | ζ3ζ76+2ζ3ζ73+2ζ3ζ72+ζ3ζ7+ζ3+2ζ76+ζ73+ζ72+2ζ7+1 | ζ3ζ76+2ζ3ζ75+2ζ3ζ74+ζ3ζ7+ζ3+2ζ76+ζ75+ζ74+2ζ7+1 | orthogonal faithful |
(1 43 22)(2 44 23)(3 45 24)(4 46 25)(5 47 26)(6 48 27)(7 49 28)(8 50 29)(9 51 30)(10 52 31)(11 53 32)(12 54 33)(13 55 34)(14 56 35)(15 57 36)(16 58 37)(17 59 38)(18 60 39)(19 61 40)(20 62 41)(21 63 42)
(1 15 8)(2 16 9)(3 17 10)(4 18 11)(5 19 12)(6 20 13)(7 21 14)(22 36 29)(23 37 30)(24 38 31)(25 39 32)(26 40 33)(27 41 34)(28 42 35)(43 57 50)(44 58 51)(45 59 52)(46 60 53)(47 61 54)(48 62 55)(49 63 56)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)
(2 4 3 7 5 6)(8 15)(9 18 10 21 12 20)(11 17 14 19 13 16)(22 50 29 43 36 57)(23 53 31 49 40 62)(24 56 33 48 37 60)(25 52 35 47 41 58)(26 55 30 46 38 63)(27 51 32 45 42 61)(28 54 34 44 39 59)
G:=sub<Sym(63)| (1,43,22)(2,44,23)(3,45,24)(4,46,25)(5,47,26)(6,48,27)(7,49,28)(8,50,29)(9,51,30)(10,52,31)(11,53,32)(12,54,33)(13,55,34)(14,56,35)(15,57,36)(16,58,37)(17,59,38)(18,60,39)(19,61,40)(20,62,41)(21,63,42), (1,15,8)(2,16,9)(3,17,10)(4,18,11)(5,19,12)(6,20,13)(7,21,14)(22,36,29)(23,37,30)(24,38,31)(25,39,32)(26,40,33)(27,41,34)(28,42,35)(43,57,50)(44,58,51)(45,59,52)(46,60,53)(47,61,54)(48,62,55)(49,63,56), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63), (2,4,3,7,5,6)(8,15)(9,18,10,21,12,20)(11,17,14,19,13,16)(22,50,29,43,36,57)(23,53,31,49,40,62)(24,56,33,48,37,60)(25,52,35,47,41,58)(26,55,30,46,38,63)(27,51,32,45,42,61)(28,54,34,44,39,59)>;
G:=Group( (1,43,22)(2,44,23)(3,45,24)(4,46,25)(5,47,26)(6,48,27)(7,49,28)(8,50,29)(9,51,30)(10,52,31)(11,53,32)(12,54,33)(13,55,34)(14,56,35)(15,57,36)(16,58,37)(17,59,38)(18,60,39)(19,61,40)(20,62,41)(21,63,42), (1,15,8)(2,16,9)(3,17,10)(4,18,11)(5,19,12)(6,20,13)(7,21,14)(22,36,29)(23,37,30)(24,38,31)(25,39,32)(26,40,33)(27,41,34)(28,42,35)(43,57,50)(44,58,51)(45,59,52)(46,60,53)(47,61,54)(48,62,55)(49,63,56), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63), (2,4,3,7,5,6)(8,15)(9,18,10,21,12,20)(11,17,14,19,13,16)(22,50,29,43,36,57)(23,53,31,49,40,62)(24,56,33,48,37,60)(25,52,35,47,41,58)(26,55,30,46,38,63)(27,51,32,45,42,61)(28,54,34,44,39,59) );
G=PermutationGroup([[(1,43,22),(2,44,23),(3,45,24),(4,46,25),(5,47,26),(6,48,27),(7,49,28),(8,50,29),(9,51,30),(10,52,31),(11,53,32),(12,54,33),(13,55,34),(14,56,35),(15,57,36),(16,58,37),(17,59,38),(18,60,39),(19,61,40),(20,62,41),(21,63,42)], [(1,15,8),(2,16,9),(3,17,10),(4,18,11),(5,19,12),(6,20,13),(7,21,14),(22,36,29),(23,37,30),(24,38,31),(25,39,32),(26,40,33),(27,41,34),(28,42,35),(43,57,50),(44,58,51),(45,59,52),(46,60,53),(47,61,54),(48,62,55),(49,63,56)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63)], [(2,4,3,7,5,6),(8,15),(9,18,10,21,12,20),(11,17,14,19,13,16),(22,50,29,43,36,57),(23,53,31,49,40,62),(24,56,33,48,37,60),(25,52,35,47,41,58),(26,55,30,46,38,63),(27,51,32,45,42,61),(28,54,34,44,39,59)]])
Matrix representation of C32⋊F7 ►in GL6(𝔽43)
40 | 33 | 15 | 30 | 29 | 4 |
39 | 36 | 29 | 11 | 26 | 25 |
18 | 14 | 11 | 4 | 29 | 1 |
42 | 17 | 13 | 10 | 3 | 28 |
15 | 14 | 32 | 28 | 25 | 18 |
25 | 40 | 39 | 14 | 10 | 7 |
2 | 5 | 5 | 0 | 5 | 0 |
0 | 2 | 5 | 5 | 0 | 5 |
38 | 38 | 40 | 0 | 0 | 38 |
5 | 0 | 0 | 2 | 5 | 5 |
38 | 0 | 38 | 38 | 40 | 0 |
0 | 38 | 0 | 38 | 38 | 40 |
42 | 42 | 42 | 42 | 42 | 42 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
42 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 42 |
0 | 0 | 0 | 42 | 0 | 0 |
0 | 42 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 1 | 1 | 1 |
0 | 0 | 0 | 0 | 42 | 0 |
G:=sub<GL(6,GF(43))| [40,39,18,42,15,25,33,36,14,17,14,40,15,29,11,13,32,39,30,11,4,10,28,14,29,26,29,3,25,10,4,25,1,28,18,7],[2,0,38,5,38,0,5,2,38,0,0,38,5,5,40,0,38,0,0,5,0,2,38,38,5,0,0,5,40,38,0,5,38,5,0,40],[42,1,0,0,0,0,42,0,1,0,0,0,42,0,0,1,0,0,42,0,0,0,1,0,42,0,0,0,0,1,42,0,0,0,0,0],[42,0,0,0,1,0,0,0,0,42,1,0,0,0,0,0,1,0,0,0,42,0,1,0,0,0,0,0,1,42,0,42,0,0,1,0] >;
C32⋊F7 in GAP, Magma, Sage, TeX
C_3^2\rtimes F_7
% in TeX
G:=Group("C3^2:F7");
// GroupNames label
G:=SmallGroup(378,22);
// by ID
G=gap.SmallGroup(378,22);
# by ID
G:=PCGroup([5,-2,-3,-3,-3,-7,182,187,723,8104,1359]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^3=c^7=d^6=1,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1*b^-1,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^5>;
// generators/relations
Export
Subgroup lattice of C32⋊F7 in TeX
Character table of C32⋊F7 in TeX